
The tokglobalstack Package
Version 1.0
Alceu Frigeri∗

February 2026

Abstract
This package offers two stack’s implementations. Those stacks can be used to, for instance,

preserve some tokens beyond a variable number of nested groups, or to implement recursive
commands without relying on local groups.

Contents
1 Introduction 1

2 Stack Variable 1

3 Custom Stack Commands 2

4 Examples of Use 2
4.1 Using a Stack Variable . 2
4.2 Using Custom Stack Commands . 3

1 Introduction
When it’s necessary to preserve the value of some tokens beyond a local group, it’s enough, in
simple cases, to use \group_insert_after:N or \aftergroup.

But, sometimes you don’t have (or can’t use) this information, see [1], for instance. For those
cases, this package deploys a strategy (presented and compared in [2]) based on stacks.

These stacks can also be used to write recursive commands (preserving variables) without
having to rely on local group scoping.

2 Stack Variable

\globalstack_new:N {⟨stack-var⟩}
\globalstack_gpush:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gput_right:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gput_left:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gpop:N {⟨stack-var⟩}

\globalstack_new:N
\globalstack_gpush:Nn
\globalstack_gput_right:Nn
\globalstack_gput_left:Nn
\globalstack_gpop:N

\globalstack_new:N will globally create a stack variable named ⟨stack-var⟩ (a specialized token
list variable). Once created it is possible to push tokens into it (\globalstack_gpush:Nn), amend
tokens to the top (\globalstack_gput_right:Nn and \globalstack_gput_left:Nn) and pop those
tokens (\globalstack_gpop:N) into the input stream. All assignments being global.

Note: An error will be raised if ⟨stack-var⟩ is already defined.
∗https://github.com/alceu-frigeri/tokglobalstack

1

https://github.com/alceu-frigeri/tokglobalstack

3 Custom Stack Commands

\globalstack_csnew:n {⟨stack-prefix⟩}\globalstack_csnew:n

This will globally create a set of commands, named after ⟨stack-prefix⟩, to push, put and pop
items from a private global stack. All assignments to/from that stack will be global, and the stack
itself will be unique to the command’s set.

Note: An error will be raised if ⟨stack-prefix⟩ is already used.

\<stack-prefix>_gpush:n {⟨tokens⟩}
\<stack-prefix>_gput_right:n {⟨tokens⟩}
\<stack-prefix>_gput_left:n {⟨tokens⟩}
\<stack-prefix>_gput_gpop:

\<stack-prefix>_gpush:n
\<stack-prefix>_gput_right:n
\<stack-prefix>_gput_left:n
\<stack-prefix>_gpop:

The \<stack-prefix>_gpush:n will push ⟨tokens⟩ (can be any number of tokens) into a global,
private, stack. \<stack-prefix>_gput_right:n and \<stack-prefix>_gput_left:n will amend tokens
to it, and \<stack-prefix>_gpop:, as the name implies, will insert the top of the stack into the
input stream. That way it is possible to have a very fine control of what, where and when the
items are collected and used.

4 Examples of Use
In the following examples, two stacks will be used, ⟨myStackA⟩ and ⟨myStackB⟩ (one of each kind).

\ExplSyntaxOn
% Just a set of booleans for testing
\bool_new:N \l__mytest_tmpa_bool
\bool_new:N \l__mytest_tmpb_bool
\bool_new:N \l__mytest_tmpc_bool
\cs_new:Npn \mytest_show_bools:n #1

{ \underline{#1:}\par
\bool_if:NTF \l__mytest_tmpa_bool {{\color{red}a~true}}{a~false} ~-~
\bool_if:NTF \l__mytest_tmpb_bool {{\color{red}b~true}}{b~false} ~-~
\bool_if:NTF \l__mytest_tmpc_bool {{\color{red}c~true}}{c~false} \par

}

\globalstack_csnew:n {myStackA}
\globalstack_new:N \g_myStackB_stack

\ExplSyntaxOff

4.1 Using a Stack Variable
Using just one position (of the stack) and restoring all tokens in a single point.

\ExplSyntaxOn
\group_begin:

{{ \globalstack_gpush:Nn \g_myStackB_stack
{\bool_set_true:N \l__mytest_tmpa_bool}

{{ \globalstack_gput_right:Nn \g_myStackB_stack
{\bool_set_true:N \l__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \mytest_show_bools:n {T2}
}} \globalstack_gpop:N \g_myStackB_stack

\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

T1:
a false - b false - c false
T2:
a false - b false - c false
T3:
a true - b true - c false

2

Using two positions (of the stack) and restoring the tokens in separated points.

\ExplSyntaxOn
\group_begin:

{{ \globalstack_gpush:Nn \g_myStackB_stack
{\bool_set_true:N \l__mytest_tmpa_bool}

{{ \globalstack_gpush:Nn \g_myStackB_stack
{\bool_set_true:N \l__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \globalstack_gpop:N \g_myStackB_stack

\mytest_show_bools:n {T2}
}} \globalstack_gpop:N \g_myStackB_stack

\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

T1:
a false - b false - c false
T2:
a false - b true - c false
T3:
a true - b false - c false

4.2 Using Custom Stack Commands
Using just one position (of the stack) and restoring all tokens in a single point.

\ExplSyntaxOn
\group_begin:

{{ \myStackA_gpush:n
{\bool_set_true:N \l__mytest_tmpa_bool}

{{ \myStackA_gput_right:n
{\bool_set_true:N \l__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \mytest_show_bools:n {T2}
}} \myStackA_gpop:

\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

T1:
a false - b false - c false
T2:
a false - b false - c false
T3:
a true - b true - c false

Using two positions (of the stack) and restoring the tokens in separated points.

\ExplSyntaxOn
\group_begin:

{{ \myStackA_gpush:n
{\bool_set_true:N \l__mytest_tmpa_bool}

{{ \myStackA_gpush:n
{\bool_set_true:N \l__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \myStackA_gpop:

\mytest_show_bools:n {T2}
}} \myStackA_gpop:

\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

T1:
a false - b false - c false
T2:
a false - b true - c false
T3:
a true - b false - c false

References
[1] David Carlisle. Stackexchange about grouping. 2026. url: https://tex.stackexchange.

com / questions / 757755 / coffins - scope - groups # comment1889872 _ 757755 (visited on
01/01/2026).

[2] Alceu Frigeri. The xstacks package. 2026. url: https://ctan.org/pkg/xstacks (visited on
02/18/2026).

3

https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://ctan.org/pkg/xstacks

	Introduction
	Stack Variable
	Custom Stack Commands
	Examples of Use
	Using a Stack Variable
	Using Custom Stack Commands

