The tokglobalstack Package
Version 1.0

Alceu Frigeri*

February 2026

Abstract

This package offers two stack’s implementations. Those stacks can be used to, for instance,
preserve some tokens beyond a variable number of nested groups, or to implement recursive
commands without relying on local groups.

Contents

1 Introduction 1

2 Stack Variable 1

3 Custom Stack Commands 2

4 Examples of Use 2
4.1 Using a Stack Variable L oL 2
4.2 Using Custom Stack Commands 3

1 Introduction

When it’s necessary to preserve the value of some tokens beyond a local group, it’s enough, in
simple cases, to use \group_insert_after:N or \aftergroup.

But, sometimes you don’t have (or can’t use) this information, see [1], for instance. For those
cases, this package deploys a strategy (presented and compared in [2]) based on stacks.

These stacks can also be used to write recursive commands (preserving variables) without
having to rely on local group scoping.

2 Stack Variable

\globalstack_new:N \globalstack_new:N {(stack-var)}
\globalstack_gpush:Nn \globalstack_gpush:Nn {(stack-var)} {(tokens)}
\globalstack_gput_right:Nn \globalstack_gput_right:Nn {(stack-var)}{(tokens)}
\globalstack_gput_left:Nn \globalstack_gput_left:Nn {(stack-var)} {(tokens)}
\globalstack_gpop:N \globalstack_gpop:N {(stack-var)}

\globalstack_new:N will globally create a stack variable named (stack-var) (a specialized token
list variable). Once created it is possible to push tokens into it (\globalstack_gpush:Nn), amend
tokens to the top (\globalstack_gput_right:Nn and \globalstack_gput_left:Nn) and pop those
tokens (\globalstack_gpop:N) into the input stream. All assignments being global.

Note: An error will be raised if (stack-var) is already defined.

*https://github.com/alceu-frigeri/tokglobalstack

https://github.com/alceu-frigeri/tokglobalstack

3 Custom Stack Commands

\globalstack_csnew:n \globalstack_csnew:n {(stack-prefix)}

This will globally create a set of commands, named after (stack-prefix), to push, put and pop
items from a private global stack. All assignments to/from that stack will be global, and the stack
itself will be unique to the command’s set.

Note: An error will be raised if (stack-prefix) is already used.

\<stack-prefix>_gpush:n \<stack-prefix>_gpush:n {(tokens)}
\<stack-prefix>_gput_right:n \<stack-prefix>_gput_right:n {(tokens)}
\<stack-prefix>_gput_left:n \<stack-prefix>_gput_left:n {(tokens)}
\<stack-prefix>_gpop: \<stack-prefix>_gput_gpop:

The \<stack-prefix>_gpush:n will push (tokens) (can be any number of tokens) into a global,
private, stack. \<stack-prefix>_gput_right:n and \<stack-prefix>_gput_left:n will amend tokens
to it, and \<stack-prefix>_gpop:, as the name implies, will insert the top of the stack into the
input stream. That way it is possible to have a very fine control of what, where and when the
items are collected and used.

4 Examples of Use

In the following examples, two stacks will be used, (myStackA) and (myStackB) (one of each kind).

\ExplSyntaxOn
% Just a set of booleans for testing
\bool_new:N \1__mytest_tmpa_bool
\bool_new:N \1__mytest_tmpb_bool
\bool_new:N \1__mytest_tmpc_bool
\cs_new:Npn \mytest_show_bools:n #1
{ \underline{#1:}\par
\bool_if:NTF \1__mytest_tmpa_bool {{\color{red}a~true}}{a~false} ~-~
\bool_if:NTF \1__mytest_tmpb_bool {{\color{red}b~true}}{b~false} ~-~
\bool_if:NTF \1__mytest_tmpc_bool {{\color{red}c~true}}{c~false} \par
}

\globalstack_csnew:n {myStackA}
\globalstack_new:N \g_myStackB_stack
\ExplSyntax0ff

4.1 Using a Stack Variable

Using just one position (of the stack) and restoring all tokens in a single point.

\ExplSyntax0n
\group_begin:
{{ \globalstack_gpush:Nn \g_myStackB_stack T1-:
{\bool_set_true:N \1__mytest_tmpa_bool} .
{{ \globalstack_gput_right:Nn \g_myStackB_stack a false - b false - ¢ false
{\bool_set_true:N \1__mytest_tmpb_bool} T2:
\mytest_show_bools:n {T1} a false - b false - c false
}} \mytest_show_bools:n {T2} T3:

}} \globalstack_gpop:N \g_myStackB_stack
\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

a true - b true - ¢ false

Using two positions (of the stack) and restoring the tokens in separated points.

\ExplSyntaxOn
\group_begin:
{{ \globalstack_gpush:Nn \g_myStackB_stack

{\bool_set_true:N \1__mytest_tmpa_bool} T1:
{{ \globalstack_gpush:Nn \g_myStackB_stack a false - b false - ¢ false
{\bool_set_true:N \1__mytest_tmpb_bool} T2:
\mytest_show_bools:n {T1} E—
}} \globalstack_gpop:N \g_myStackB_stack a false - b true - ¢ false
\mytest_show_bools:n {T2} T3:
}} \globalstack_gpop:N \g_myStackB_stack a true - b false - ¢ false
\mytest_show_bools:n {T3}
\group_end:
\ExplSyntax0ff

4.2 Using Custom Stack Commands

Using just one position (of the stack) and restoring all tokens in a single point.

\ExplSyntaxOn

\group_begin:
{{ \myStackA_gpush:n T1:
{\bool_set_true:N \1__mytest_tmpa_bool} .

{{ \myStackA_gput_right:n

{\bool_set_true:N \1__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \mytest_show_bools:n {T2}
}} \myStackA_gpop:
\mytest_show_bools:n {T3}
\group_end:
\ExplSyntaxOff

a false - b false - ¢ false
T2:
a false - b false - ¢ false
T3:
a true - b true - ¢ false

Using two positions (of the stack) and restoring the tokens in separated points.

\ExplSyntax0n
\group_begin:
{{ \myStackA_gpush:n

{\bool_set_true:N \1__mytest_tmpa_bool}

{{ \myStackA_gpush:n

{\bool_set_true:N \1__mytest_tmpb_bool}

\mytest_show_bools:n {T1}
}} \myStackA_gpop:
\mytest_show_bools:n {T2}
}} \myStackA_gpop:
\mytest_show_bools:n {T3}
\group_end:
\ExplSyntax0ff

T1:
a false - b false - ¢ false
T2:
a false - b true - ¢ false
T3:

a true - b false - ¢ false

References

[1] David Carlisle. Stackexzchange about grouping. 2026. URL: https://tex . stackexchange .
com/ questions /757755 / coffins - scope - groups # comment 1889872 _ 757755 (visited on
01/01/2026).

[2] Alceu Frigeri. The xstacks package. 2026. URL: https://ctan.org/pkg/xstacks (visited on
02/18/2026).

https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://ctan.org/pkg/xstacks

	Introduction
	Stack Variable
	Custom Stack Commands
	Examples of Use
	Using a Stack Variable
	Using Custom Stack Commands

